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PREFACE

The purpose of this study was to determine if the
Optimal Control Model (OCM) could be used to predict pilot
induced oscillations (PIO) in a variety of aircraft
configurations prior to flight test. The OCM was first
applied to two exiéting data bases and correlations
attempted with several OCM outputs. Based on analytical
results, the two most promising prediction schemes were used
to predict pilot handling qualities ratings (PHQR) and PIQOs
aof 12 different flight test configurations. A flight test
was performed in the approach and landing task for each of
these configurations using the USAF/CALSPAN variable
stability NT-33A.

The flight test results confirmed that the OCM was
capable'of predicting both PHGRs and PIOs prior to flight.
80 percent of the flight test PHQORs were within one pilot
rating of the OCM predicted PHQRs. 9& percent of the flight
test PI0s were within one PIO rating of the OCM predicted
PIO ratings. The data base obtained durimg flight test was
considered reliable and accurate and should be valuable data
to use in future research.

The joint AFIT/USAFTPS program under which this
research was conducted provided a unique opportunity to
apply academic research to an actual flight test. It also

provided the author new insight into handling qualities and
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the ability to "bridge the gap'" between the flight test and
engineering communities. In accomplishing this research 1
was helped by several people. [ would like to thank my
thesis advisor, Dr. R. A. Calico, for providing me with the
original idea. Additionally, [ would like to thank my
academic advisor and TPS advisor, Maj Dan Gleason, for
providing assistance and motivation during this extended
program.

I also wish to thank my test management project team,
which included Capt Clarke Mamning, Capt Rodney Liu, Capt
Kurt Baum, and Capt Steve Thomas for their efforts in making
our flight test go extremely smoothly. I would like to
thank Russ Easter and John Ball of CALSPAN corporation for
keeping us safe during those divergent PIOs 50 féet above
the ground, as well as their insight and experience in

handling qualities and the use of the handling qualities

rating scale.
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Abstract

The purpose of this study was to evaluate the Optimal
Control Model (OCM) in predicting handling qualities and PI0O
pilot ratings during the approach and landing task. Using
two existing PIO databases, analytical prediction schemes
were developed using the OCM. The two prediction schemes
used were flight path error and crossover frequency. The
prediction schemes were then applied to twelve different
aircraft/flight control system landing configurations. The
twelve confiqurations were flight tested using a
USAF/Calspan variable stability NT-33A.

The OCM was able to predict pilot handling qualities
ratings (PHQR) accurately (within one pilot rating) BO
percent of the time. PIC ratings were predicted accurately
96 percent of the time. Due to a PIO rating problem in the
original databases, the PIO prediction schemes were madified
using flight test data. Additional flight test
configurations should be flown to verify the revised flight
path error and crossover frequenc? Pl0 prediction schemes.

Because of the subjective nature of PHQRs and PIO
~atings, the flight test results varied between pilots.
Flight test results showed that the fighter pilot gave
configurations poorer PHGRs and PIO ratings than the
multiengine pilots. Additionally, the correlation between

multiengine pilots was better than with the fighter pilot.

Xvi
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The crossover frequency prediction scheme was the most
accurate predictor of pilot ratings, while the flight path

error prediction scheme was slightly more accurate for PIO

ratings. Both predictors agreed with classical control

theory, showing correlation between flight path error,

crossover frequency, and pilot/PI0 ratings. The flight path

error and crossover frequency rating prediction methods

should be used as a tocl in flight control system design.

Xxvil



PREDICTION OF LONGITUDINAL PILOT INDUCED QGSCILLATIONS

USING THE OPTIMAL CONTROL MODEL

I. INTRODUCTION

Backgqround

According to Ralph H. Smith(1:6), a pilot induced
oscillation (PID) is "“an unwanted, inadvertent and atypical
closed loap coupling between a pilot and two or more -
independent response variables of an aircraft'. Smith posed
this definition to eliminate certain categories of aircraft
that merely exhibit deficient handling qualities and nmot a
true tendency to PIO.

PIOs have been encountered since the beginning of
manned flight. Two examples of PIOs that nearly resulted in
the loss of an aircraft was the inadvertent first flight of
the YF-16 as well as a divergent PIO in the YF-17 (as
simulated in the USAF/CALSPAN NT-33). A longitudinal PIOD
was also encountered during space shuttle testing when the
pilot was tasked to land on a concrete runway. Before this
test, the shuttle had shown no PI0 tendencies and only by
increasing the pilot’'s gain (by landing on the concrete
runway instead of the large dry lakebed) was this PIO
exposed. Pl0Os have traditionally been difficult to

duplicate in fixed-base simulation, and as a result are




often not detected until the latter stages of flight test.

Since a PI0 is difficult and sometimes impossible to
stop, it can and has had in the past catastrophic
consequences. An example of a catastrophic PIO was one in
which an F-4 was destroyed at high speed and low altitude
when the pitch augmentation failed.

PI0s have been defined previously as only occurring in
a multi-task situation. Typical sitdations where PI10s have
been encountered are in takeoff and landing, formation/air
refueling, and air-air tracking. From this definition it
appears that PIl0s occcur in demanding, high pilot "gain"
tasks and do not otherwise show up. The most common cause
of PIOs are excessive demands on the pilot (2:17). Assuming
that the pilot is motivated and well trained, the amount of
gain, lead and lag a pilot can provide in a given task is
limited. When'this limitation has been exceeded, a PIO will
probably occur. It has been shown (1:4) that pilot handling
qualities ratings (PHGR) do not necessarily correlate with
PIO ratings; that is, an aircraft with good handling
qualities may have strong P10 tendencies, while an aircraft
with poor handling qualities may not PIO at all.

In MIL-STD-1797, the requirement states that "There
shall be no tendency for pilot induced oscillations, that
is, sustained or uncontrollable oscillations resulting from
efforts of the pilot to control the aircraft."” (3:22). The

Mil-STD also references the research done by Smith when




applying this qualitative requirement. Smith’s research was
done using frequency domain techniques with a particular
pilot model assumed in each case. Frequency domain
techniques have been quite successfu} in the past, but they
do not account for nonlinearities such as pilot remnant.
Since a pilot in the loop is a requirement for a PIO to
occur, it seems logical that the most important element to
model in any analytical PIO study would be the pilot.

The Optimal Control Model (OCM) was developed in 1970
by Kleinman, Baron, and Levison (4). This was one of the
first attempts to model the human pilot using state space
techniques. State space models have become more popular in
recent years because of advances in digital computers.
According to Curry, Hoffman, and Young (5:19-20), there are
several advantages to the 0OCM over describing function pilot
models. First, the OCM more easily handles multiple input,
multiple output control tasks. This is due to the state
space nature of the model. Secondly, the model appears to
provide an empirically verified measure of workload related.
to attention. Therefore, it will work for several different
levels of displayed information, accounting for the
increased or decreased attention required. It will also
account for the source of the observation, i.e. whether the
variable is observed under IMC (Instrument Metearological
Conditions), implying that the cockpit displays are being

used, or VMC (Visual Meteorological Conditions), implying



that the pilot is looking outside the cockpit. Finally, the
OCM is more adaptable to calculating time-varying
statistical behavior over the ensemble of possible
trajectories. It takes into account random system 'noises’

as well as pilot 'nmoises’.

Objectives

The overall objective of this project was to evaluate
the Optimal Control Maodel in predicting PHQGRs and PIO0 pilot
ratings during the approach and landing task. The advantage
of using the approach and landing task is that it forces the
pilot into a high gaim situation, thereby exposing PIOs if
they exist. The aircrafts/flight control configurations
modeled using the OCM came from two studies dane with the
USAF/Calspan variable stability NT-33.

The LAHOS (Landing Approach Higher Order System) study
was completed in 1978 and evaluated several different
aircraft configurations (6). This longitudinal study
encompassed the entire spectrum of handling qualities and
along the way encountered several longitudinal PIO‘'s. The
second study used was the HAVE PI0O test project (7). In
this study several different aircraft/control system
configurations were evaluated, in which more longitudinal
PI0s were encountered. The theory used was an application
of the Optimal Control Model (OCM). The OCM has been

applied primarily to handling qualities predictions in the



past, although some PI0 work has been done by Hess (8). The
ultimate goal of this effort was to predict beforehand
whether or not a particular aircraft configuration will
encounter PIO. The specific objectives of this project
were:

1. Determine what parameters obtained from the OCM
correlate with pilot handling qualities and PIO ratings.

2. Use OCM correlations to predict PHQRs and PIO
tendencies for several aircraft/flight control system
configurations.

3. Conduct a flight test of the aircraft/flight
control system canfigurations chosen above and obtain actual
PHAQR and PIO data.

4. Determine if there is a correlation between the
Optimal Control Model predictions and the actual flight test
results in the approach and landing task.

S. Determine the percentade of correct pilot and PID

ratings predictions made by the OCM.

Method

The procedure used to accomplish the objectives
presented above was the following:

1. The OCM was applied to the 1978 Calspan Landing
Approach Higher Order System (LAHOS) data. The results were

recorded for each aircraft/control system configuration.



2. The OCM was applied to the HAVE PIO data and the
results recorded for each aircraft/contral system
configuration.

3. The results from both the HAVE PIO data and the
LAHOS data were correlated versus pilot rating (to verify
the OCM) and PIO rating/tendency. Prediction schemes based
on these results were developed.

4., A set of aircraft/flight control éystem
configurations were developed to implement and flight test
on the Calspan NT-33 aircraft. These configurations had
varying lead, lag, and corresponding time delay designed to
cover the spectrum of pilot handling qualities and PIO
ratings.

5. Using the prediction schemes developed from the
OCM, the PHGR and PIO ratings of the newly developed
configurations were predicted.

&. The configurations were flight tested on the NT-33
in the approach and landing task and the predicted ratings

were compared to the actual ratings.

Limitations

This study applied the OCM in a slightly different way
than it had been applied in the past. The intent of this
application was to come up with a straightforward way to
predict PIO tendency over a wide variety of aircraft

configurations. The OCM was chosen to accomplish this



primarily because it is relatively simple to implement.
Because of the inherent difficulty of modeling the human
pilot, this study did not attempt to put amny specific
meaning on the absolute values of the various output
parameters from the OCM. The goal was to keep the input
model parameters constant throughout all of the
aircraft/control system configurations and look for trends
in the OCM outputs versus pilot handling qualities and PIO

ratings.



II. EQUATIONS OF MOTION AND THE OPTIMAL CONTROL MODEL

In this section the equations of motion for longitudinal
PIO analysis are developed in state space form from the
Laplace transformed equations found in McRuer (8). These
equations are further simplified using "lumped"” stability
derivatives in accordance with the LAHOS and HAVE PIO study.
The additional control system dynamics for the NT-33 are then
added to the state space formulation of the aircraft
dynamics. The theory and mathematical development of the
Optimal Control Model (OCM) is next presented. The computer
implementation of the OCM is briefly discussed and a
description of how the OCM parameters were chosen for this
application is presented. Then the moteling of the approach
and landing task is developed. Finally, the OCM is applied
to a specific example from the LARKOS NT-3% study to include

additional control system dynamics.

; | E . £ Mot
The longitudinal equations of motion are found in

McRuer (8:256). These linearized perturbation equations are

based on steady state flight and are presented in the body

axis. In this application, the equations were presented using

"lumped” stability derivatives as described in the LAHOS

study (6:211). Since the parameter identification technigue

used in the LAHOS study identified the transfer function

directly, some stability derivatives were lumped together.
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The equations relating the identified derivatives to actual

derivatives were

M _ = H(;+ Ud‘{.w M =M

q W

w+MJw

The estimated stability derivatives and dynamic

characteristics fop the LAHOS, HAVE PIO, and HAVE CONTROL °

(flight test) configurations are in Appendix A. The

equations presented below assumed negligible gust inputs:

du/dt + Woda/dt + gcos@ 6 = qu + wa +

0
dw/dt - Uode/dt + gsineoe = Zuu + wa +
dq/dt = Muu + wa +
de/dt = q

In the LAHOS longitudinal study, the only
during the landing phase was the elevator

thrust input during the landing phase was

qu + xéeée

Zga * Zg 5, (1]

qu + Méeée

control input used
input. Since the

small, it was

assumed negligible. Xq and Zq were also considered

negligible. Writing the equations in state space form yielded

the following:




- - -
Xu Xw —HO -gcose0 u
a zw U0 ~g51n60 w
(2]
u Hw Mq 0 q
0] 1 0 e
" h
Xé
e
za [ ]
+ € &
e
Ms
e
0
[ 0]

The definitions for the terms in equation [2] are as follows:

u

w

perturbed forward velocity
perturbed downward velocity
perturbed pitch angle

perturbed pitch rate

elevator control input
equilibrium forward velocity
equilibrium downward velocity
equilibrium pitch angle

x body axis stability derivatives

2 body axis stability derivatives

10




M[] = y body axis stability derivatives
The system output to the pilot ;(t) can be modeled as a
linear combination of the states ;(t) and controls E(t).

Therefore the set of equations representing the NT-33

aircraft in matrix form is

x,(t) = A_x_(t) + BaE(t) (31

y(t) = C x (t) + D u(t) (4]

where []a is that quantity as related to the NT-33 airframe.

The equations of motion presented above do not include
the additional control system dynamics found in most of the
LAHOS and HAVE PIO configurations. The control system
dynamics are given in transformed form as shown in Appendix A
and can be easily converted to state space as required by the
OCM. The NT-33 simulation also included a second order feel
system and a second order elevator actuator. These two
systems were not modeled in the analysis because their
frequencies were well above the frequency band of interest.
The set of additional control system dynamics can be

represented by the following formulation:

xb(t) = Abxb(t) + Bbup(t) (81

u(t) = Cbxb(t) + Dbup(t) (61
where []b is that quantity as related to the additional

11




i

control system dynamics and E;(t) is the stick deflection
applied by the pilot. In addition a shaping prefilter (to be
discussed later) is added in state space form

X (t) = A (t) + E_w(t) (7]

Equations [3], (4], [5], and [7) are combined to express the

entire system of equations as

X(t) = Ax(t) + BEp(w + Ew(t) [8]
y(t) = Cx(t) + DEp(t) [9]
=T “T,oy Teoy T, 17 T
with x"(t) =[ xc(t), xa(t), xb(t)] , A = [Ac, Aa’ Ab] , etc.
The Optimal Control Maodel

This application of the Optimal Control Model (OCM) is
based on the theory put forth by Kleinman, Baron, and Levison
(4). The discussion and mathematical development that
follows is based on that theory. After the OCM theory is
developed completely, the computer application of the model
is briefly discussed. Finally, an example of one LAHOS
configuration is presented using OCM theory.

The basic assumption underlying the OCM approach is that
the human is "optimal” in some sense; that is, the well
trained, motivated pilot attempts to control the system the

best that he or she can while at the same time minimizing the
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amount of workload or amount of effort required (4:358).
Obviously, as the difficulty of the task increases, the
workload and effort required also increases. A simplified
model of the OCM as first proposed by Kleinman et. al.

(4:359) is shown in Figure 1:

Control Input Displayed
Qutput, u(t) Disturbances Variables
Controlled
Manipulator | = Element ——3 Display
" Dynamics
Neuromotor + Equilization Time +
b ¢ = = - - -
Dynamics | Network Delay
P—-dv
Motor Commanded Observation
Noise Control Noise
t , v t
Vm( ) up(t) y_1( )

Figure 1. Kleinman et. al. linear model

In Figure 1 the controlled element dynamics are the
mathematical model of the aircraft. The input disturbances
are random variables representing all unmodelled inputs such

as wind, weather, etc. The aircraft generates a display both

13
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inside and outside the cockpit to the pilot. The output from
the display is the information the pilot processes to close
the feedback loop. However, what the pilot perceives is not
necessarily what is actually being displayed.

To account for random "noises”, such as instrument panel
vibration, a dirty canopy, whether the pilot is viewing the
instrument directly or peripherally, etc., an observation
noise is added to the displayed variables. After passing
through the observation noise, the displayed variables go
through the pilot’'s perceptual time delay. This time delay
accounts for visual and brain processing delays. After
passing through this delay, the displayed variables finally
enter the pilot’s equalization network.

The equalization network is what the pilot uses to
optimize his/her control strategy, depending on the situation
and task at hand. The equalization network therefore depends
on the situation and the controlled element. The pilot then
provides a commanded control to the system. The double lines
shown in Figure 1 represents situations where more than one
control is used and one or more variables are observed.

Added to this commanded control is a motor noise. This motor

noise represents any random errors the pilot makes in

applying the controls. It also accounts for the pilot’s
inperfect knowlege of the commanded control input. After
passing through the input summing junction, the signal passes

through the pilot s neuromuscular lag, which accounts for

14




neuromctor delays in the pilot. Finally, the input passes

through the manipulator which represents the control system
dynamics. These dynamics include anything external to the

actual aircraft dynamics such as servos, feel system, or

stick filters.
Mathematical Development of the OCM
The complete set of vehicle dynamics are represented by
the linear, time-invariant equations of motion:
x(t) = Ax(t) + Bu(t) + Ew(t) [10]
The vector x(t) represents the vehicle states, u(t) is a
vector representing the pilot’s control input, and w(t)

represents the random external disturbances discussed above.

In the OCM development, w(t) is a zero-mean, gaussian white

noise with autocovariance:
E{ w(t)w (o) } = W&(t-o) (11]

The pilot observations y(t) are represented by a linear

combination of the states and controls:
y(t) = Cx(t) + Du(t) (121

These observations are presented to the pilot
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continuously through the instrument panel or some ocutside
reference. The OCM assumes that if the pilot explicitly
observes a displayed output, he can extract the rate of

change of that output. Recall that an observation noise

v. (t) is added to the observed variables. In addition,

Vi

recall that a motor noise vm(t) is also added to the pilot’'s
control input. Based on a study of controller remnant (9),

the noises vy (t) and vm(t) are assumed to be sufficiently
i

wideband so as to be considered white noise processes with

autocovariance:

E{ v (t)v. (o) } = V. &(t-o) [13]
vy vy vy

E{ vm(t)vm(a) } = Vmé(t—a) [14]

A éingle noise vy is associated with each displayed output
i
yi(t). After passing through the time delay, T, the human

pilot ends up perceiving the following:

ypi(t) = yi(t-f) + vyi(t-r) {15]

or

yp(t) = Cx(t-7) + Du(t-7) + vy(t-r) [16]

This is a delayed, noisy replica of the system output, which

is ready to be processed by the pilot's equilization network.
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The pilot’'s equilization network processes the delayed,
noisy observed data to produce the pilot’s control input,
up(t). Added to the pilot’ s control input is a motor input
un(t), which accounts for random errors in executing the
control input. um(t) is'generated by the first order noise
process

u(t) = up(t) + up(t) (17]

{xn(t) + lu (t) = v (t) [18]

where 1 is the feedback gain and vm(t) is defined in equation
[14].

The optimal control gsins, L*, are chosen by the pilot to
minimize a quadratic cost function which in its most general

form is given by

1T'r T Tt T
J = E{ lim - I {Y Qy + xQx +u@u+ua@g u]dt} (18]
T T vy X T u
0
subject to
Qy 20 Qx zZ0 Qu =20 Qr > 0
where Q = q , 1 =3 and Q@ =0, i #j. The Q's in
()ij ()i ()ij

equation [19] are diagonal weighting matrices for the display
variables, state variables, control rate, and control
displacement, respectively. The selection of the cost

weightings is not an easy task, although they can be selected
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either objectively (by the designer) or subjectively (by the
pilot in performing the task). The solution of this problem
is simply a well-defined linear regulator problem with time
delay and observation noise. The usual assumptions of
controllability and observability are required to solve this
problem.

The pilot’s neuromuscular lag has been modeled in the
past by a first order lag:

1
Hn(S) = —T:- (201
n

The neuromusc.lar dynamics have not been represented in the
cost function. However, included in the cost function is a
weighting on the control rate, ﬁ(t). This control rate
weighting has little physical meaning since a trained pilot
rarely makes rapid control movements. Also, it can be shown
(10) that including a control rate term in the cost function
results in a first order lag being introduced into the
optimal controller. Therefore, the control rate weightings,
qri‘s. are chosen to yield the appropriate neuromuscular time
constant, L

It can also be shown (11) that the single control input
up(t) that minimizes the cost function is the solution of the
following linear feedback law:

A

y I X
Tnup(t) + up(t) = -L7 x(t) Lll un(t) [211]
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In the above equation, ;(t) is the best estimate of the
system state x(t) based on the observed variables yp(t), and
Gm(t) is the best estimate of um(t). The rest of the
mathematical development in this section is based on the
presentation in Curry et. al. (5:152-155) and assumes cost
function weightings on observed variables and control rates

. *
only. The time constant T and gains L are found from the

following two equations:

-1
n ~ 1n+1 (22]
* .
Li = Tnli , i=1, ..., n [23]
The li's (i=1, ..., n+l) are obtained from the equation
1 = b 'K./q [24]
0 "0 *r

where KO is the unique positive definite solution of the n+1

dimensional algebraic matrix Ricatti equation:

T T -
AOK0 + KOAO + C0 QCO - Kobob0 Ko/qr = 0 [25]

Q = diaglq, , @, , ..., q_ ]

y1 YZ yn
b0 = col [O0,0, ..., 0,1]

A B

A, = C. = [C | D]
0 0 0 Q

18
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The gain Lm* due to the control u_ in equation (21] is

m
determined from the following equation:

x -
Lm - Tn[(Tn-l - AO + bol)

1 T T =

bol (Cy QO + Kob)/qr [28]
b = col[bO,OJ

This equation assumes that the bandwidths of up(t) and um(t)

are approximately equal. It is also assumed that
L *u (t) << L¥x(t) or u_(t) =0
n Yn X or u. =

With this assumption and the bandwidth assumption, equations

(18] and 721] can be added to produce the following equation:

Tu(t) + uCt) = m(t) + v (t) (271
() = -L* x(t)
~

The state estimate with time delay x(t-7) is produced by a
Kalman filter. To account for the observation time delay T,
the Kalman filter is cascaded with a least-mean-squared
predictor as shown in Figure 2 (5:21). The Kalman filter
least-mean-squared estimate of the delayed state is generated
by

~

X(t-T) = A x(t-T) + chT

-1 _ "_
Vy [Yp(t) Cox(t )] (28]

T °1m(t-r)

+ bo n

20
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In this equation x(t) = col[x(t),u(t)]. The term £ is the
error covariance matrix. £ is the unique positive definite
solution to the steady state variance matrix equation

T

- T - -
0 = Ali + ZAI + W ZCO Vy

1
COE [29]

with the following definitions for A1 and W:

The predictor adjusts the delayed state estimate given
~

by the Kalman filter output p(t) = x(t-7):

~ AlT

x(t) = L(t) + e ° [P(t) - §(t-7)] (30]
. _ _1 ‘

(L) = A T(t) + bgT  "m(t) [31]

Kleinman (12) was able to obtain a closed form expression for
the covariance of ;(t), thus explicitly relating the time
delay and observation noise to system performance. By
solving for the expected values of states, observed variables
and controls, a quantitative least-mean-squared output of the

OCM can be used to compare with experimental results. The

closed form expressions from (12) are as follows:

22




-— -

T T
~ A,T AT Ao A, o
ety e tzet + e twe! ac [32]
L RS Jo
mZAl 1 AITT KTa
+ I e e XCO \') COZe e do

where A = Ay - bgT. The expected values of the OCM outputs

are as follows:

2 ) o
1-:{::i (t)}-Xi, i=1,2, ..., n
{ (t)} C XCq ]1 i=1,2, ..., r [33]
E{uzct)} = X [(34]
n+l,n+l

This completes the mathematical development of the OCM
as originally developed by Kleinman, Baron, and Levison.
This mathematical model of the pilot has been applied

successfully many times and compared against experimental

results.

Computer Implementation

The Optimal Control Model was implemented using a
Fortran computer program called PIREP (5). PIREP is a
powerful program that allows for some extra terms in the OCM.
First of all, PIREP allows the user to input an observation

threshold. This threshold sets the minimum value of a
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variable that a pilot can observe. Any value below this, and
the pilot will not notice the change in that variable. This
threshold is put into the model as a dead zone element.(see
Figure 2). Therefore, the observation noise is modified as

follows:

2

o.
v = o, [_,__?__._] (351
y. i
i N(ai,ai)

In this equation Vyi is the covariance of the white
observation noise, o is the standard deviation of Vio N is
the describing function for the nonlinear dead zone element
with half width A and Py is the noise to signal ratioc. In
PIREP, the covafiance Vyi is solved for iteratively; the user
merely has to provide the noise to signal ratio pi and the
threshold value.

An estimate of pilot workload is also included in
PIREP's implementation of the OCM. The type of pilot
workload used by PIREP is known as task interference workload
(13). The basic theory behind task interference workload is
that the pilot is trying to accomplish some primary task and
most of his attention is focused on that.' However, other
side tasks come up that interfere with the primary task.
Since these side tasks must be accomplished, they take away

some of the pilot’'s attention that would otherwise be spent

on the primary task. Examples of side tasks include changing
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radio frequencies, updating the inertial navigation systen,
clearing for other aircraft, and talking on/listening to the
radio. Task interference workload is consistent with the OCH
formulation. In the task interference workload model, the
total fraction of attention by the pilot is composed of the

following terms:

ftot = £, fo * fother f38)
f = Zf
¢ i7i

In equation [36], fc is the portion of attention allocated to

the primary control task and fc' is that fraction of fc

i
allocated to each displayed variable. The term fo is the
fraction of attention lost by the pilot when switching from

one displayed variable to another, or from the control task

to the side task. Finally, fother is the fraction of

attention designated to the other side tasks (switching

radios, talking to ground control, etc) that the pilot must
perform.

To implement this model for task interference, the
fractions of attention are accounted for by modifying

equation {357:

2
0
VYi pi oy
V}‘r = = [37]
i £ £ N (o, ,a.)
Ci Ci 1 1
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In this equation, Vy0 is the power spectral density of the
i

observation noise of vy when the pilot’'s attention is limited
to that display variable alone, and fc is the fraction of

i
attention allocated to the it‘h displayed variable. Note that

to be consistent with the assumptions of the OCM, fc ‘s have
i

to be chosen for not only the displayed yi's, but also chosen

for the rates of change of the yi’s. If fc is chosen to be
i

1.0, equation [37] reduces to equation [35]}. In the PIREP

implementation, only the fc ‘s have to be chosen, it
i

automatically accounts for fo and fother' Note that the

maximum value of f is 2.0, not 1.0. This is because the

total
observation rate fractions of attention are normally chosen
to be the same as the observed yi’s, therefore the total
attention allocation always adds up to 2.0.

Finally, a random noise w(t) needs to be added into the
state equation to account for disturbances. What the noise
w(t) actually does is provide a signal for the OCM to follow.
The OCM attempts to minimize the mean squared error while
following w(t). Typically w(t) is implemented as a linear
system driven by white noise to generate a signal that
approximates a specific task, such as air-air tracking or
approach and landing. w(t) is placed in the A matrix as a
shaping filter, as shown in equation [8]. After these

modifications are chosen for the OCM, it can be implemented

in PIREP. The parameters and variables that need to be
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chosen by the user are as follows:

System matrices A, B, C, D, E

Q., Q

Cost functional weightings Qx’ Qy, a

r
Controller time delay, 7

Variance of process or driving noise, W
Motor noise to signal ratio, Vm
Indifference thresholds for the observations, TH

P SRS R S S O

Observation noise to signal ratio, Vy
i

8. Fractional attention allocations, fc ‘s

9. Neuromuscular time constant, T

In addition, PIREP will calculate frequency domain
representétions of the OCM. The most commonly used frequency
domain output is a composite describing function of the
system. The single axis Ych function is an "outer loop”
representation of the OCM and is typically used to determine
the gain and phase margin of the entire system. According to
Kleinman et. al. (4:364), the OCM structure can be

represented in the frequency domain as

v(s) = H(s)u(s) [38]

H(s) can be solved for directly from the OCM as follows:
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1e N (sI—Al)o _
H(s) = - ————|(sI - A)J e do(sI-A)
0 [39]

T s + 1
n

-1

~

T, -1
+ sI-A + blle]ZCO Vy

~

T

. . - x _ _ -1
In this equation, le = [1,0], A= A1 ZCU Vy

CO’ and K is
defined in equation [32]. The next subject to be addressed is

how to choose the particular parameters of the OCHM.

Choosing QCM Parameters
Several methods have been recommended for choosing the

cost functibnal weightings Qx’ Q_, Qu’ and Qr' The weighting

¥
Qr is chosen consistent with the theory to yield the
appropriate value of the neuromuscular time constant, Th
One method recommended by Bryson and Ho (14:148) is to weight
each variable by the inverse of the maximum allowable
deviation squared. For exanple, if the maximum flight path
angle deviation allowed was five degrees, then the weighting
on the flight path angle would be (1/5)2. Another method is
to vary the weightings to match the OCM output with the
experimentally obtained output. Since we want to use to OCM
to predict PIO's beforehand, it is not practical to vary the

weightings to match experimental results. The method

recommended by Bryson and Ho was attempted on a LAHOS
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configuration, and the results were compared with just usihg
a weighting of 1.0. The RMS error output of the OCM was
exactly the same for both cases. The only noticeable
difference in the two cases is the absolute value of the cost
function. To keep the analysis as simple as possible, cost
weightings of 1.0 are used in the OCM.

The controller time delay, which accounts for visual and
brain processing delay has typical values of 0.1 to 0.3. For
this study the controller time delay was chosen to be 0.2.
The neuromuscular time constant, T for the fastest reaction
time with a force-type manipulator has been experimentally
determined to be about 0.1.

The observation thresholds depend upon the format of the
display. A typical value for these thresholds would be ten
percent of full scale deflection on the particular display.
No assumptions made about the display format in this
analysis, but thresholds have to be provided for the rate
terms of the displaved variables. The thresholds were chosen
to be .05 deg for the explicitly displayed variables and .18
deg/sec for their rates, which is consistent with the work
done by Anderson and Schmidt (15).

The motor and observation noise to signal ratios have
both been experimentally determined through man-machine human
factors studies. Typically, the motor noise is chosen to be
-25 db and the observation noise is set at -20 db. These

values will be used for this application of the OCM.
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Attention allocation is highly dependent upon the task,
the display, and the training of the pilot. For example, in
a VMC (visual meteoroclogical conditions) situation, the pilot
will probably spend most of his time on outside references,
while in an IMC (instrument meteorological conditions)
situation, the pilot is more likely to concentrate on his
instruments. The cross check each pilot uses will be somewhat
different, sd it is difficult to specify attention
allocations that will work for everyone. To keep the
analysis simple, the fractional attention allocations were
chosen to be the same and to add up to 1.0 across all
observed variables and their rates.

As stated before, a driving noise, w(t) needs to be
added to the system state equations to give the OCM a signal
to track. The shaping filter to be used in this analysis is
a second order filter taken from Anderson’s work (15:183).
This filter is a commanded aircraft attitude signal,

generated by
ec + 0.56c + 0.259c = 0.28w(t) (381
The statistics on this filter, using 02" = 848(t) are

dec = 4 deg aé§ = 2 deg/sec

This tracking task approximates the actual instrument

tracking task performed in the Neal-Smith report (16).
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Modeling the Approach and Landing Task

As stated previously, a PIO occurrence requires closed
loop coupling between the pilot and two or more response
variables. To simulate this situation in the OCM, the
approach andllanding task used was originally developed in
the report by Anderson and Schmidt (15). In the approach and
landing task, the aircraft’s altitude and vertical velocity
are important to the pilot. These two parameters can be
related to the aircraft’s flight path angle, . Therefore,
Anderson and Schmidt reasoned that controlling the flight
path angle is necessary if the pilot is to achieve good
closed loop performance. Controlling the flight path angle
is equivalent to minimizing the flight path error deviation
around a desired flight path. This can be reflected in the

cost functional as follows:

Ju) = E 1imi [q72+qu2+q{12]dt [(39]
P T T J vie u’p r'p )

where L is the flight path error and u, is the pilot’'s
control input. Flight path error is not displayed directly
to the pilot, rather it is a linear combination of states.
Other observations assumed available to the pilot in a VMC
task are pitch attitude, pitch rate, vertical velocity (or
sink rate), and vertical acceleration. This formulation

assumes that due to the kinematic relationships between these
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parameters, the pilot can close loops based on pitch
attitude, pitch rate, flight path, and flight path rate as
well as flight path error and flight path error rate.
Therefore, the pilot observation vector chosen by Anderson

and Schmidt was

_ . . . T
yp(t) - [?’e, 79, Y, }’, e, 6] [40]

The filter described by equation [38] is modified to generate

a command flight path signal using the »/9 relationship

70(5) 1
= [41]
ec(s) 16's+ 1
2
In this equation, 1/7, = 0.5s"1. Combining equation [41]
2

with equation [38] and changing the command dynamics to state

space form yields

P - F L o 1 - -

o 0 1 0 o, c

e | =1]-0.25 -0.5 o e |+ | o.2sle [42]
(o] c

7] | o o -os||n) | o

This formulation can then be put into the system matrices as

equation [8].

32



Using the observation vector shown in equation ([40],
Anderson and Schmidt showed that the solution of the OCM
vields the following block diagram description of the pilot’s

control strategy:

F F F
Yo Yo Yo rd s e v
(- (+) (+)
&« Aircraft —— P6
e Pilot
P?’

Figure 3. Flight path tracking task

From Figure 3 it can easily be seen that the pilot is closing
loops on several observations, and therefore the task as
modeled is realistic and meets the requirements for a PIO to
take place. Since the term Yo implicitly includes all of

the pilot observations in equation [40], Anderson and

Schmidt chose to weight only the obsefved variable Y- This
method will be followed in this implementation. In summary,
the OCM parameters chosen for this project are found in Table

1.
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Table 1:

OCM Parameters

Parameter

Chosen Value

Observation Vector

Cost Function Weightings

Observation Thresholds

Observation Noise/Signal
Ratio

Motor Noise/Signal
Ratio

Fractional Attention
Allocations
Observation Delay

Neuromuscular lag

T . . .
Yp = [?’e,?’e:?’.)’se,e]

Qy = di=agf1,0,0,0,0,0]

TH = 0.05 deg

e
?’e.}’:

TH = 0.18 deg/sec

78,7.9

~-20 db all observed
variables

-25 db all observed

variables
f = ,3333 all
c.
i
observed variables

T = 0.2 sec

T_ = 0.1 sec
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QCM LAHOS Example

The OCM theory and computer program PIREP will now be
applied to LAHOS configuration 1-C. The equations of motion
for the baseline configuration 1-1 (see appendix A for

specific details), using equation [2] are as follows:

r . - = - r
u -.041 11 -25 -32.08 u
w -.25 -.75 205 -2.52 w
= {43]
a 0 -.00232 -.76 0 q
o o 0 1 0 e
.0032
1.1
+ &
eS
.33685
0
N

Note that the term 63 is the pilot’s stick input in inches,
S

which is in accordance with the parameter identification
technique used in (8) The observation vector, y = Cx + Du,
needs to be developed in the form specified in Table 1.

Since y is not explicitly shown in equation [43], » can be
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solved for using the following relationships:

¥ =2 - W/UO v, =Y, -7 [44]

Using the relationships in [44], and the equations of motion,
and shaping filter shown in equation [42], the observed

variables L re, and ¥ can be expressed explicitly as

ro =, +wly -8 [45]
Fg T 0.56, - 0.5r_ + (Z /Ugpu + (Z /U )w [46]
-(gsin8y/U )8 +(Z, /U S,

e S

y = (2 /Ugu ~(Z /Uy w +(gsind /U )@ -<zée/uo')<se [47]

]

With these relationships the observation vector can then be
expressed in the proper form. For the LAHOS 1-1 baseline

configuration, the observation vector is expressed below as
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1 0 0 ooas -1 o ] %
, ?’e 0 0 1 . c
r, 0.5 0 -0.5 -.0012 -.0037 -.0123 O o,
Y 0 0 0 0 -.0049 1 0 L
¥ o o0 o0 0012 .0037 .0123 O u
. W
o o 0 o0 o 0 1 0
=]
6 o o o 0 * 0 0 1
L o b 4 b q d
' .
0
.0054
0
* 6, [48]
-.0054 s
0
0
hn o

In LAHOS configuration 1-C, there are additional control
system dynamics that need to be included in the state
equation. Filter C is a first order stick prefilter

expressed in transfer function form as (6:8)

& 2(s + 5)

- (48]

F s + 10
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In this equation, Fe is the redefined pilot’'s input when the
s

additional control system dynamics are included. Changing

equation [49] to the time domain yields

& =-106 + 2F + 10 F [50]
eS eS eS eS

This equation in its current form cannot be used in the
aircraft equations of motion. To include this term a new state

needs to be defined. Integrating equation {50] yields

6, = 2F, + 10f (F_ - & )dt [51]
S S S S

Defining Q = 10(Fe - ée ) yields the following equations:
s s

o
"
)
1
+
»

[(s52]

x = -10x - 10Fe

s (53]

The additional control system dynamics added by the filter C
can now be included in the state equation [48] by adding an
additional state, x. Finally, the state equation to be
implemented in PIREP for LAHOS configuration 1-C including

additional control system dynamics and the shaping filter is
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[ 5 ] "0 1 0 0 0 o} 0 0 ]
o]
é; ~0.25 -0.5 0 0 0 0 0 0
?;c 0.5 0 -0.5 O 0 0 0 0
0 0 0 o -0.041 .11 -25 -32.08 .003
W 0 0 0 -0.25 -.75 205 -2.52 1.1
a 0 0 o 0 -.00232 -.76 O .337
o 0 0 0 0 0 1 0 o
x 0 0 0 0 ) 0 0 -10
L d L d
-3 i - 1 r -
o, 0 0
o, 0 0.25
7q a 0
u .0064 0
+ Fe + w(t) €543
w 2.2 S 0
Q 8737 0
e 0 0
X J -20 0

The observation vector to be implemented with equation (54]

is
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e g

o1 0 - 1
7, 0 0 1 o .0048 -1 0 0 o, l
7, .5 0 -.5 -.0012 -.0037 -.0123 0 .0054|| &_
. -
r 0 0 0 O -.0048 1 0 0
= u
y 0 0 0 .0012 .0037 .0123 O -.0054|] w
e
o 0 0 0 0 0 1 0 0
q
6 0 0 0 0 0 o 1 o x
b o b P RS P
0 ]
.0108
0
+ | -.0108 | F_ [55]
S
0
0
0

Equations [54], [55], and the OCM parameters as defined in
Table 1 are input into PIREP. Sample input and output files
for LAHOS configuration 1-C are shown in Appendix B. The

pertinent OCM outputs are listed in Table 2.
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Table 2: LAHOS 1-C OCM Outputs

OCM Output Description Value
RMS Flight Path Error 07 = .6698 deg
e
RMS Flight Path Error Rate . = 1.2542 deg/sec
rd
e
RMS Flight Path -or = 3.2091 deg
RMS Flight Path Rate . = 1.7188 deg/sec
Y
RMS Pitch - ‘Angle o9 = 4.4656 deg
RMS Pitch Angle Rate o. = 4.6564 deg/sec
a
RMS Control op = .8083 inches
€s
RMS Control Rate o. = 5.887 inch/sec
Fe
s
Open Loop Crossover Frequency w, = 1.91 rad/sec
Open Loop Crossover Phase ¢c = -151.3 deg
Frequency at 1800 Phase w180~ 3.60 rad/sec
. 0
Gain at 180" Phase Iligg= =3-773 db
Performance Cost J = .0001388

The information shown in Table 2 can be obtained for all of
the LAHOS and HAVE PIO configurations. This data can be used

to find correlations with pilot and PIO ratings.
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ITI. ANALYTICAL RESULTS

To begin the analysis, 39 LAHOS configurations were put
through the OCM as implemented by PIREP. It should be noted
here that a fe; LAHOS configurations diverged when
implemented by PIREP. The configurations that wouldn 't runm
included fourth order lag prefilters. The HAVE PI0O fourth
order lag systems alsa did not converge. However, the vast
majority of the LAHOS and HAVE PI0O configurations did
converge successfully.

The OCM parameters used are those found in Table 2. As
stated previously, the OCM has in the past primarily been
applied to determining pilot ratings, and not PIO ratings.
Therefore, to verify that the model was consistent, the
results from the LAHOS simulations were first compared to
pilot handling qualities ratings (PHQR) and then to PIO
ratings. After correlations were obtainmed with the LAHOS
data, the same analysis was applied to the HAVE PIO data.
The corrélations found in the two databases were then
compared and PHOQR and PI0O prediction schemes developed from
the results.

The pilot ratings used in the 1978 Calspan study (6)
and the HAVE PI0 experiment (7) were based on the Cooper-
Harper handling qualities rating scale shown in Figure 36
(Appendix C). The PIO flowchart and rating scale is 1in

Figure 37. As can be seen from the scales, the pilot and
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PI0 ratings are highly subjective and may vary from pilot to
pilot. The variability of pilot ratings make them difficult
to quantify and develop a prediction scheme from.

Typically, the best correlation ach.ieved is usually 70-80
percent. To find out the variability between pilots in the
LAHOS and HAVE PIO studies, some least squares regression

analyses were performed om pilot and PIQ ratings.

Correlation Between Pilote

To cetermine the typical! correlaticns between pilcts,
two sample cases were analyzed. The first case was the
correlation tetween two pilots in the LASIS study. The

correlation is shown in Figure 4 below:

1"

10

™ O

o~ O [

ALOT RATING {(FA.0T B)

1 2 3 4 S 6 7 8 9 10 1"
PLOT RATNG (PLOT A)

Figqure 4, LAHOS Pilot Rating Comparisons
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In Figure 4, the coefficient of correlation (R) between
LAMOS pilot A and pilot B was 0.70. Figure 5 is a sample

ccrrelation between pilotes in the HAVE PIQO study:

1
10
S
T B
[
g
?53' ?
g e
5 :
g e
3 e
z ; :
|

1 z 3 4 5 6 7 8 8 110
PLOT RATNG (PLOT A)

Figure 5. HAVE PIO Pilct Rating Comparisons

Ir Figure 5 the coe“ficient of correlaticr 15 0.7%, which :c
higher than that ottainmed in Figure 4. In the LAHCS stuav,
correlations between pilots varied from 0.70 to 0.75, and in
the HAVE PIlD study, they varied from about 0.68 to 0.75.
Similar correlations were found when comparing PI0 ratings
between pilots. N
These results call into question whether or not PID and

pilot ratings should be averaged. There are arguments for

and against this. One argument against is that the pilot
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rating and RPIO rating scales'may not be linear, however,
there is no way to prove or disprove this. Another argument
against averaging is that not all configurations were flown
more than once. In the LAHOS study, 22 of the 39
configurations analyzed were flown only once, while in the
HAVE PID study, every configuration was flown at least
twice.

In this analysis both the pilot ratings and the PIO
ratings were averaged for all of the configurations. The
advantage in doing this was that none of the data points
were lost; every rating was included in the analysis. Also,
by averaging ratings, a particular handling qualities
deficiency observed by one pilot but not observed by another
pilot could be accounted .for.

There are a few things to note before beginning the
analysis. First of all, as stated before there were several
LAHOS caonfigurations that were flown only ance. These
configurations obviously cbuld not be averaged. At the
extremes of the rating scales, this is not a problem because
a very poor aircraft will be consistently recognized as such
by all pilots, and a very good aircraft will also pe
recognized as such, In the center of the scale, however,
one pilot might rate a configuration as a 3 and another as a
5. It the configuration is flown only once, then the rating
tends to be less objective. GSecondly, the highest PIO

rating given in the LAHDS study was a 4, while the highest
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PIO rating given in the HAVE PIO study was a 5. During
LAHOS pilot intervie: = conducted in (7:101), it was
concluded that several LAHOS configurations had divergent
PIO‘'s and should have received 5°'s. The original LAHOS PIO
ratings will be used but this inconsistency should also be

taken into consideration.

LAHOS Analysis

A total of 40 LAHOS configurations were analyzed using
PIREP. Configuration 1-A was thrown out because it was
programmed incorrectly in the original LAHOS study. In
addition, configurations 2-11i, 4-11, and 5-11 would not
converge and therefore were not included in this analysis
A summary of the LAHOS configurations, pilot ratings, and

PIO ratings are shown in Table 3:
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Average Pilot and PIO Ratings, LAHOS Data

Table 3:
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Flight Path Error Versus Cantrgl Rate

The first OCM outputs considered in this analysis were

flight path error (performance) and control rate (workload).
Schmidt (17:17) was able to show a link between pilot
ratings and these two OCM based quantities. To‘verify this
model, the same apprcach was used here. The plot of RMS
flight path error versus RMS control rate is shown in Figure

6.

002 =
LEVEL 1

o020 1 St ! @
é LEVEL 2
LEVEL 3

FLIGHT PATH ERROR(RAD)
g
]
| ]
]
]
]

CONTROL RATE (NCHES/SEC)

Figure 6. LAHOS Flight Path Error vs Control Rate (PH3Rs)

The correlation obtained in Figure 6 is similar to that

obtained by Schmidt, Level 1, 2, and 3 envelopes were

subjcctively drawn on the diagram. There does appear to be
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a correlation. This graph will be compared to the HAVE PIO0

results later.

These same two OCM
ratings. In using this
as a PI0 rating greater
defined as less than or
because a PIO rating of

a flight control design

outputs were next applied to PIO
approach, a PIO tendency was defined
than 2, and-a no PIO tendency was
equal to 2. These were chosen

2 or less would probably not warrant

change. In the true definition of

PIO, a 4 or greater would indicate an actual PI0O. However,

any undesirable motion (one requiring a flight control fix)

will be detected using this prediction. It is not as

important to predict actual PIO ratings as it is to predict

whether or not a serious PIO exists. The correlation

between flight path error, control rate, and PIO tendency is

in Figure 7.

There seems to be a trend between flight path error,

control rate, and PIO ratings similar to the trend noted

with pilot ratings. It

(pilot workload) and flight path error (pilot performance)
increases, PIOs tend to occur. However, there is a lot of

variability, and it would be difficult to predict PIO in

borderline cases.

appears that as the control rate
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Flight Path Erraor

The nmex+t OCM output evaluated was strictly a
performance messave, flight pa<h erro-. Trigs parameter dcecs
nct rezlly reflect how hard the pilot is working; it merely
shows the pilot's predicted performance in the tracking
tacsk., However, the size of the flight path error is
cirectly reliatec tc the aircraft/control system dynamics.
For example, LAHOS configurations 3-1, 3-2, and 3-3
represent the same basic airframe. LAHOS 3-1 had no
additional control system cdynamics, 3-2 had a first orcer

pole at ~10, and 3-3 had a first order pole at -4. Clearly,
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the configurations degraded as the first order lag gets

closer to the origin. The results obtained from the OCM for

these three configurations were as follows:

Table 4: Flight Path Error Trends, LAHOS Data

Configu-— Flt Path Pilot PIC
ration Error (deg) Rating Rating
3-1 .7007 4 2
3-2 . 7884 7 3
3-3 .8646 10 4

Table 4 shows that larger OCM predicted flight path
errors correlate with poorer pilot performance. The trend
shown here was found consistently across all of the LAHOS
and HAVE PI0O data. To determine the relationship using pilot
and PIO ratings, LAHOS pilot/PI0 ratings and flight path

error data is plotted in Figures 8 and 9.
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In Figures 8 and 9, there is a trend of increasing pilot/PIO
rating with increasing flight path error. Note the
conspicuous absence of any PIO ratings above 4 in Figure 9.
This tends to skew any correlations found.

Several other OCM direct outputs were plotted in an
attempt to identify caorrelations. These included pitch
rate, stick displacement, flight path rate, and pitch angle.
No significant correlation was found between pilot/PIO

ratings and any of these parameters.

Crossover Freguency

As described in section II, the OCM as implemented by
PIREP outputs a YpYc describing function of the entire man-
machine system. This open loop describing function already
includes the pilot's lead, lag, and gain compensation.
PIREP's "optimal" describing function has the pilot-
vehicle’'s crossover frequency occur such that there is a
phase margin of 30-35 degrees. Plots of these crossover
frequencies versus pilot and PIO ratings are shown in

Figures 10 and 11i.
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Both Figures 10 and 11 show reasonable correlation
between the predicted crossover frequency and pilot/PIC
ratings. One observation from these figures is that the
system’'s crossover frequencies are much lower than those
predicted by frequency domain techniques. Typically,
frequency domain technigues predict crossover frequencies of
2.5-3.5 rad/sec depending on the task. The trends shown in
Figures 10 and 11 appear tb be the best found so far. The
pilot/PIO ratings improve as the bandwidth of the system
increases, which agrees with classical control theory.
Specifically, classical control theory implies that wider
system bandwidths provide faster response of the closed loop

system.

Frequency at 180 Degrees of Phase

An attempt was made to correlate OCM ocutput with the
frequency at which the PI0O actually occurred. Assuming that
the pilot's optimal gain is already in the describing
function, an increase in gain will eventually drive the
crossover frequency to where the phase margin goes to zero.
At this frequency, the pilot-system shauld go unstable and a
PIO is likely to occur. However, since the transfer
function output by the OCM relates flight path error to
control input rather than attitude to control input, the

describing function and corresponding crossover frequencies

will be different than typical énalyses.
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The frequencies cbtained by increasing the gain to the
zero phase margin point do not correlate with actual PO
frequencies. However, the pilot/PI0 ratings do go up with
decreasing frequencies, showing the same trend as the
crossover frequencies do. Plots of the frequencies at 180
degrees of phasa versus pilot/PI0 ratings are sncwn 1in

Figuras 12 and (3.
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The correlations in Figures 12 and 13 are similar to that
found for crossover freguencies; however, the correlations
are not guite as gccoco in these cases. it is interesting tco
note that the fregquencies predicted by the OCM are clcse~ teo

the typical aircraft/control system crossover fregusncies.

HAVE PIQ Analysis

The HAVE FIO OCM resuits were analyzed in the same way
that the LAHOS data was. Seventeen of the eighteen HAVE P10
configurations were implemented in PIREP. HAVE PIO
configuration 5-11 would not converge to a solution, so it

was not included in the analysis. Table 5 contains a
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summary of the HAVE PIO configurations,

PIO ratings.

pilot ratings, and

Table 5: Average Pilot and PIO Ratings, HAVE PIO Data
Configu- Number of Average Pilot Average PIO

ration Flights Rating Rating

2-1 3 2.3 1

2-5 3 9 4.3

2-7 3 S5 3

2-8 3 8.7 4

2-B 4 4 2

3-1 3 4 2.3

3-3 3 4 1.7

3-6 2 4.5 2

3-8 3 7 3.7

3-12 2 8 4.5

I-13 2 10 4.5

3-D 2 2 1

4-1 3 2.7 1

4-2 3 4.3 1.3

S5-1 2 3.5 1

5-9 2 7 4

5-10 2 10 S

Since each configuration.in the HAVE PI0 study was

flown more tharn once,

it was hoped that the correlations of

the OCM outputs to pilot/PI0O ratings obtained would be

better than those obtained for the LAHOS data. The same

plots were made for the HAVE PI0O data.

path error/control rate,

flight path error,

The plots for flight

crossover

frequency, and frequency at 180of phase are shown 1in

Figures 14-21.
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Correlation of LAHOS and HAVE PI0 Results

The trends found in Figures 14-21 are similar to the
correlations shown in the LAHOS study. Visually, there
appears to be a better correlation in the HAVE PIO0 data than
there is in the LAHOS d;ta. To determine the actual
correlations a least squares regression analysis was
performed on the LAHOS and HAVE PI0 data. The results of a
least squares fit between the pilot/PIO0 ratings and the OCM
outputs for the LAHDS and HAVE PIO data are shown 1in Tables

é&6 and 7.

Table 6: Pilot Rating Correlations, LAHOS and HAVE PIO Data

OCM Outputs Carrelatiaon Coefficient
Flight Path Error (LAHQOS) .72
Flight Path Error (HAVE PIO) .76
Frequency at 180 (LAHOS) .67
Frequency at 180 (HAVE PIQ) .81
Crossover Frequency (LAHOS) .73
Crossover Frequency (HAVE PIQO) .78

Table 7: PIO Rating Correlations, LAHOS and HAVE PIO Data

OCM Qutputs Correlation Coefficient
Flight Path Error (LAHOS) .57
Flight Path Error (HAVE PI0) .81
Frequency at 180 (LAHOS) .58
Frequency at 180 (HAVE PIO) .82
Crossover Frequency (LAHOS) <69
Crossover Frequency (HAVE PID) .82
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As expected, the correlation in the LAHOS data was
lower than that obtained in the HAVE PI0O data. One possible
explanation for this is that most of the LAHOS
configurations were flown only once. Also the highest LAHOS
PIO rating given was a 4, which tended to skew that
regression.

The correlations obtained using the OCM show a definite
relationship between the output variables and pilot and PIO
ratings. Given the variability of the pilot ratings, the
coefficients of correlations found here are probably about
the best that can be obtained and are typical of results
from other handling qualities research efforts. It appears
that the best overall PIO correlation occurs when using the
crossover frequency. 0One possible explanation for this is
that the describing function is based on using all of the
OCM output variables, whereas using a parameter such as
flight path error looks at the RMS error of only one

variable.

Prediction Schemes

To develop a method for predicting longitudinal PIO,
the results fraom both the LAHOS and HAVE PIQ analyses were
first used. The LAHOS and HAVE PI0O OCM outputs were both
put into the same database and a least squares regression
was done as before. The correlated results of the combined

database are shown in Tables 8 and 9.
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Table B: Pilot Rating Correlations, Combined Database

OCM Output Correlation Coefficient (R)
Flight Path Error .73
Frequency at 180 .70
Crossover Frequency .73

Table. 9: PIO Rating Correlations, Combined Database

OCM Cutput Correlation Coefficient (R)
Flight Path Error .70
Frequency at 180 .70
Crossover Frequency .75

The correlations obtained for the combined LAHOS and
HAVE P10 results are about as good as those obtained during
the LAHOS analysis, but poorer than those obtained -using the
HAVE PI0 database. However these correlations show that
both the LAHOS and the HAVE PIO OCM results agree. The
correlations obtained here again are typical of those found
in other handling qualities studies. It is interesting to
note that there again appears to be a high correlation
between crossover frequency and PI0O ratings. It also
appears that this 0OCM applicat;on predicts pilot ratings
about as well as it predicts PI0O ratings.

The best correlations obtained during this analytical

study were using flight path error and crossover frequency.
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Additionally, correlations with the HAVE PIO database were
significantly higher than with the LAHOS data. One possible
explanation was that most of the LAHOS configurations were
flown only once. Also, the highest LAHOS PI0O rating given
was a 4, which is suspect and tended to skew that
regression. Therefore, the prediction schemes chosen for
flight test were based on flight path error and crossover
frequency data from only Fhe.HAVE PI0 database. Table 10

shows the flight test prediction equations.

Table 10: Flight Test Prediction Equations

Flight Path Error Crossover Frequency

Pilot Ratings | 616.0 % (&) - 3.3| -13.1 % (W) + 26.9

PIO Ratings 353.4 % (Je) - 2.5 -7.4 % (Q%) + 14.6

Linear regression flight test prediction limes and actual
data for the HAVE PID flight path error and crossover

frequency predictions are 1n Figures 22 through 25.
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IV. FLIGHT TEST METHOD

The flight test portion of this project was conducted
as part of a USAF Test Pilot School systems project, called
HAVE CONTRCOL. The test team consisted of three project
pilots and two engineers, including the author.
Additionally, two Calspan safety/instructor pilots acted as
safety pilots during the flight test.

A total of twelve different aircraft/control system
combinations were flown using the USAF/Calspan variable
stability NT-33A. The test team flew twenty-five sorties
totaling 27.8 flight hours between 12 September and 16
October 1989 at the Air Force Flight Test Center (AFFTC},
Edwards Air Force Base, California. The flight test
consisted of handling qualities evaluations of the twelve

configurations in the approach and landing task.

Test ltem Description

The NT-33A variable stability test aircraft, S/N 51~
4120, was a modified, two seat jet trainer operated by the
CALSPAN Corporation, Buffalo, New York and owned by the
Flight Dynamics Laboratory, Wright Patterson AFB, Ohio.
(18,19) The aircraft was capable of variable dynamic
response and control system characteristics. (20) The
Variable Stability System (VSS) modified the static and

dynamic responses of the basic NT- 33A by commanding control

&9



surface positions through full authority electro-hydraulic
servos. A programmable analog computer, associated aircraft
response sensors, control surface servos, and an electro-
hydraulic force-feel system provided the total simulation
capability. The instructor/safety pilot varied the computer
gains through controls located in the rear cockpit, allowing
changes in airplane dynamics and control system
characteristics during the flight. Test aircraft center of
gravity varied from 26.1 to 24.8 percent mean aerodynamic
chord due to normal fuel consumption. Appendix D contains
additional information concerning the aircraft systems,
capabilities, and safety provisions.

The front cockpit AVR-7 Heads Up Display (HUD)
displayed several flight parameters, including airspeed,
altitude, angle of attack, pitch attitude, heading, and the
flight path marker (total velocity vector). The HUD was
used during the test to closely simulate a representative

fighter aircraft.

Instrumentation and Data Reduction

The NT-33 test instrumentatiaon system contained the
following items:

1. An on-board Ampex AR 700 magnetic tape recording
system with 2.25 hours recording capability was used to
record aircraft flight conditions, flight control positions,

pilaot voice, and aircraft states from the aircraft data
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acquisition system (DAS).

2. An AN/ANH-2 voice recorder was used to record
interphone and UMF radio communications.

3. A HUD video recorder was used to record all
approaches and landings.

The NT-33A project pilot operated the HUD and an on-
board voice recaorder system. The NT-33A instructor/safety
pilot operated the magnetic tape system and the HUD camera.
A complete list of the instrumentation parameters are
located in Appendix D. The AFFTC photographic branch
provided ground videotape coverage of each landing task.

Following each NT-33 mission, the project pilots
reviewed their HUD video and tape recorder audio and
summarized their comments for each configuration flown on
their inflight pilot comment card. Each comment card
included the individual project pilot PHQR, PIO, and
confidence rating factors for each configuration flown
({Appendix C). Project pilot comments were used to
qualitatively describe the aircraft PI0O tendencies and
handling qualities during the approach and landing task. In
addition, pilot comments were used to ensure project pilots
used similar criteria when assigning PHGRs. The PHORs and
PI0 ratings for each NT-33A configuration were tabulated and
included in chapter V.

Pilot comments, PHOGRs, and PIO ratings were used to

determine if the aircraft had a PI0 tendency during the
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approach and flare. The PI0 was defined as an undesirable
periodic motion which interferes with the accomplishment of
the task and requires the pilot to reduce his gain or remove
himself from the loop. The actual PIO tendencies were then

compared to those predicted prior to flight.

Test Methods and Conditions

The landing longitudinal PID tendencies and flying
qualities were evaluated at three pairs of short period
natural frequencies and damping ratios. All short period
dynamics met MIL-STD-1797 Level 1 requirements for the
landing approach (Category C). The configuration dynamics
are depicted in Figure 26 and listed in Table 11, along with
the flight control system filters, and predicted handling
qualities levels. The phugoid and lateral-directional
characteristics were held constant and are listed in
Appendix A. The &T—33A instructor/safety pilot set the
short period dynamics by adjusting the appropriate variable
stability gain control in the rear cockpit. The rear seat
pilot also selected the predetermined flight control system
characteristics.

After takeoff, the project pilot took’control of the
aircraft, and climbed to appraximately 5,000 feet pressure
altitude. The instructor/safety pilot reconfigQured the
aircraft dynamics and established the landing configuration.

The project pilot accomplished the auto-step and auto-ramp
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Figure 26. HAVE CONTROL Baseline Dynamics

inputs and then performed the hand-step and hand-ramp inputs
used for system identification. The system identification
tasks accomplished during the flight test were part of
another research project and will not be discussed further.
After accomplishing the open loop tasks, the project
pilot established a 1000 feet per rinute descent in the
landing configuration. Then at 50 feet above a 4000 feet
mean sea level target altitude, the piloZ simulated a
landing task using an aggressive level off. As a safety

precaution, if the configuration exhibited a divergent PIO
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HAVE CONTROL Flight Test Configurations

Table 11

i RS
1-1 0.75 | 1.0 | 1.0 | -= [ -—= | —= | -- 1

1-3 4.0 | -- 4 | - | -- 2 .
1-10 16.0] -- | -- | 0.7] 4 3(8)%
2-1 0.75 | 2.0 1.0f ~- | - --1]-- 1

2-D 0.5/ 20 | 10 | -- | -- 2

2-2 16.0] -- | 10 | - | -- 2

2-5 1.0] -- 1| -- | -- 3(8)
2-7 144.0) -- | -- | 0.7} 12 2

3-1 0.50 | 3.2 1.0 - -- | -- | -- 1

3-3 4.0| -- 4 | -- | -- 2

3-5 1.0] - | 1] -1 :- 2

3-6 256.0f -- | -- [ 0.7] 18 2

3-8 81.0| -- | -- | 0.7 9 2

* Numbers in parentheses indicate
qualities rating.

First Order Filters:

Second Order Filters:

K(s+rl)

(s+7

2)
K

2

s +2(1wn
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or other Level 3 characteristics, that configuration was not
tested any further. This never occurred during the flight
test.

After the simulated landing was accomplished, the
project pilot returned ta the pattern and flew the approach
and landing without an offset. After touching down, the
instructor/safety pilot disengaged the VSS and performed the
take off. The pilot then made preliminary comments on the
configuration while the instructor/safety pilot flew the
aircraft on an extended downwind. If, during the straight
in approach, a divergent PIQO occurred or adequate
performance could not be achieved, then the offset landing
task was not attempted. None of the flight test
configurations were ever abandoned during straight in
approaches. Two visual approaches with a lateral offset
were then flown, with one offset to each side of the runway.
After the first offset approach, the project pilot added to
his preliminary comments. After the second offset approach,
the project pilot summarized his overall comments and
assigned a PIO rating and PHQR for that configuration. If
the evaluation pilot felt confident enough to make an
overall evaluation based on only two approaches he was
allowed to eliminate the third approach. The evaluation
pilot was allowed to assign separate ratings for the

approach and flare if he deemed it necessary.
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Two landing configurations were flown on each mission
for a total of six approaches. During the last two sorties,
which were slightly longer in duration, three configurations
were evaluated.

The task for this project was a visual approach with a
lateral offset and a correction to centerline prior to
touchdown. The size of the lateral offset was approximately
150 feet. The 150 foot offset to the left was made by
aligning with the left edge of the runway, and the 150 foot
offset to the right was made by aligning with the right edge
of the runway. The aircraft was flown on glidepath using
the instrument landing system until the beginning of the
overrun. The correction to centerline was initiated at 100
feet above ground level. The safety pilot assisted in
maintaining a constant offset correction between the three
project pilots.

The touchdown zone was 1000 feet long starting at 500
feet past the threshold. The touchdown aimpoint was 1000
feet from the threshold and within 5 feet of centerline.
Each landing was treated as a "must land" situation, unless
the instructor/safety pilot and/or project pilot determined
that safety of flight would be compromised in an attempt to
land. Table 12 summarizes the evaluation task performance

criteria used to assign a PHGR to this visual landing task.
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Table 12: Task Performance Standards

Desired Adequate
No PIOs
Taouchdown within 5 feet of| Touchdown within 25 feet
centerline (main wheels centerline (tip tank on
on centerline) centerline)
Touchdown at aimpoint Touchdown at aimpoint
+250 feet +500 feet
Approach airspeed *35 kts Approach airspeed -5/+10 ksfj

The following test limitations were observed during the
evaluation:

1. The NT-33A instructor/safety pilot assumed
immediate and positive manual control of the aircraft at the
first indication of any NT-33A system malfunction or if a
dangerous situation developed.

2. Crosswind component was required to be less than 15
knots.

3. All testing was performed in accordance with the

aircraft Flight Manuals (18,19) and AFFTCR 55-2 (21).
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V. FLIGHT TEST RESULTS AND ANALYSIS

Twelve af the thirteen planned configurations were
flown by at least two project pilots. Pilot comments are
summarized in Appendix E. Time history plots showing
Calspan baseline configuration identifications are shown in
Appendix F. Plots of stick force and pitch rate for each
HAVE CONTROL flight test confiqQuration are also in Appendix
F. Comparisons of the flight path error and crossover
frequency prediction schemes with flight test results will

be presented. Additionally, a comparison in PHORs between

praoject pilots will be analyzed.

Flight Path Error

Flight path error is an 0OCM output that reflects the

pilot's predicted performance; that is, how close he is

tracking a certain flight path angle. The OCM analysis
showed that the size of the flight path error was directly
related to the aircraft and control system dynamics. LAHDS

and HAVE PIO data were correlated with flight path error and

a prediction scheme was developed. As stated previously,

the HAVE PIO correlations were much better than the LAHAS

correlations. Therefore, the prediction scheme used for

flight path error was based on the HAVE PID database. Table
13 shows the actual and predicted handling Qqualities ratings

using the flight path error prediction scheme.
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Table 13: Flight Path Error Pilot Rating Results

Predicted Actual
Configuration Pilot Ratings Pilot Ratings

1-1 S 2,4
1-3 9 7,7
2-1 4 3,2
2-D 4 4.5,3
2-2 S 4,2
2-5 9 8,10
2-7 S 4.5,5
3-1 4 2,3
3-3 5 3,3
3-5 é 6,5
3-6 5 3,6
3-8 S 3,7,4,4

From Table 13, 62 percent of the predictions were
within one pilot rating of the actual flight test results.
This predictor appears to only tell part of the story. The
handling qualities rating scale is based on pilot workload
and performance. However, this predicéor doesn ' t take pilot
workload into account, only performance. Figure 27 shows
average flight test pilot rating versus flight path error
and a comparison to the prediction line. In general, a
smaller flight path error yielded a better pilot rating,

which conforms to theory.
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Table 14 presents the actual and predicted PI0O ratings

using the flight path error prediction scheme.

.

Table 14: Flight Path Error PID Rating Resulte

Configuration Predicted Actual ?
PIO Ratings PIC Ratings
1-1 2 2,2
1-3 4 4,4
2-1 2 1,1
2-D 2 1,2
2-2 2 1,1
2-5 S 6,5
2-7 2 3,1
3-1 1 1,1
3-3 2 1,2
3-5 3 3,4
3-6 2 3,3
3-8 2 2,2,4,1




Table 14 shows that 96 percent of the predictions were
within one PI0O rating of flight test results. This
pradiction scheme was fairly accurate and reliable. Figure
28 plots the average P10 ratinQ versus flight path error andg
the prediction line. A possible explamation for flight path
error predicting PIO ratings more accurately than handling
quality raéings is that in an actual! PIO, deviation frcm
narmal flight path Qould be larger than flight -path errcr in

a stable approach. A linear correlation seems present in

this plot.
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Crossover Frequency.

As described previously, an OCM frequency domain output
is a pilot in the loop transfer function, which includes the
pilot's lead, lag and gain compensation. The transfer
function's crossover fregquency provides a phase margin of
30-35 degrees. Thigs is in essence a measure of the pilct’'s
worklcad. It definees the maximum amount the pilot can
compensate before making the system unstable. The higher
the crossover freqgquency, the better the pilot canm control
the system. Figure 29 shows the average flight test PHORs

plotted against the system’'s croscover freguency.
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Figure 29. HAVE CONTROL PHQR vs Crossover Freguency
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As expected, higher crossover frequencies yielded
better pilot ratings, which conforms to theory. Table 15
presents the flight test and predicted pilot ratings using

crossover frequency.

Table 15: Crossover Frequency Pilot Rating Results

Configuration Predicted Actual
Pilot Rating Pilot Rating

1-1 3 2,4
1-3 7 7,7
2-1 3 3,2
2-D 4 4.5,3
2-2 4 4,2
2-5 8 8,10
2-7 S 4.5,5
3-1 3 2,3
3-3 S 3,3
3-5 ) 6,95
3-6 5 5,6
3-8 I 3,7,4,4

Table 15 shows that 80 percent of the predictions were
within 1 pilot rating of the flight test results. This
predictor was much more accurate than flight path error.
Results seem to conform to theory, in that pilot workload
was a major factor in pilot ratings. For example,
configuration 2-5 received a pilot rating of 8. However,
task desired performance was achieved. The performance was
only half of the story because the AEsired performance was

achieved at the bottom of a PIO.
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Table 16 presents the actual and predicted PIO ratings

using the crossover frequency prediction scheme.

Table 16: Crossover Frequency PI0O Rating Results

Configuration Predicted Actual
PIO Ratings PIO Ratings

1-1 1 2,2
1-3 3 4,4
2-1 1 1,1
2-D 2 1,2
2-2 2 1,1
2-5 4 645
2-7 2 1,3
3-1 1 1,1
3-3 2 1,2
3-S5 3 3,4
3-6 2 3,3
3-8 3 2,2,4,1

Table 16 shows that 92 percent of the predicted PIO
ratings were within one PIO rating of the flight test
results. Figure 30 plots average PID ratings versus
crossover frequency. Again, the higher crossover frequency
yielded a better (lower) PIO rating, conforming to theory.

A trend developed in both the flight path error
predictions and crossover frequency predictions. The PIO
predictions were fairly accurate at the lower PIO ratings.
However, neither scheme predicted a PIO rating higher than a
four, yet configuration 2-5 consistently received test
ratings higher than a four. To determine the cause of this,

the original LAHOS and HAVE PIOD data were reviewed. An
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inconsistency in using the PIO rating scale was uncovered.
Specifically, a problem existed when interpreting the
difference between an undesirable mction arnd a PIO. After.
consuliting with Calspan, who originally wrote the PI0 rating
scale, the test team determinec that an undesirsble motion
would be am uncommanded aperiodic aircraft response, and a
PI0 wou'd be a periodic ascillation. By this definition,
any periodic oscillation would fall into a PIO rating of
four or higher. When reviewing the LAHOS and HAVE PI0 data,
it appeared that trhis same criteria had not been applied.
For example, LAHJOS configuratiorn 2-9 received a pilot rating

of 10 and a PID rating of three. Pilot comments included
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"Easy to over-rotate and get into damped PIO. Had to put in
an input and wait. Got down to 20 feet, got into PIO due to
delayed response.” According to these comments the PID
rating should have been a S or 6. Inconsistencies such as
this were found throughout both databases. The flight path
error and crossover frequency prediction techniques skewed
the predictions of the higher PIO ratings toward lower.ones
since they were based on these two databases. Therefore,
the PI0 prediction results could be improved at the higher
end of the PI0O scale. Based on this analysis, new PIO
prediction schemes using flight path error and crossover
frequency were developed using a least squares regression of
the flight test data. The new PI0 prediction equations

developed were:

Flight Path Error: A431.0 % (J),) -3.8 [S61

Crossover Frequency: -9.4 ¥ (W.) + 18.0 (571

To determine the correlation between flight test data and
the new prediction equations, a statistical analysis was
performed on the regression. The coefficients of
correlation for the flight path error and crossover
frequency predictors were 0.88 and 0.78, respectively. The
new prediction lines and flight test data are in Figures 31
and 32. These prediction schemes should be verified through

additional flight test.
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The crossover frequency prediction scheme was the most
accurate predictor of pilot ratings, while fhe flight path
error prediction scheme was more accurate for PIO ratings.
Both predictors agreed with classical control theory,
showing a definite correlation between flight path error,

crossover frequency, and pilot/PI0 ratings.

Comparison Between Pilots.

Three pilots flew and rated the flight test
configurations. The pilots’ operational experience and

background are summarized in Table 17.

Table 17: Project Pilot Experience

Pilot ~ Aircraft Hours
A C-141 2500

B F/RF-4 1000
T-329 50

C ) B-52 2200
T-37 150

Because of the subjective nature of pilot and PIO
ratings, the flight test ratings varied from pilot to pilot.
To determine the variability and its influence on prediction
scheme errors, correlations between pilots A, B, and C are
presented in Figures 33 through 35. These figures show that
the best correlations occurred between pilots A and C. A

possible explanation for this is that pilots A and C had a
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multi-engine background while pilot B had a fighter
background. These two different flying backgrounds could
influence piiot ratings. For example, when flying a large
multi-engine aircraft, the pilot has a tendercy toc fly the
approcach and landing in an open loop manner using low gains.
A pilot of a small fighter aircraft tends to be more closed
loop in the apprcach and landing phase and uses higher
gains. Flight test results showed that pilot B tended to
rate confiqurations worse than pilot A or C. For example,
pilot B gave configuration 3-8 a PHGR of 7, while pilot A
rated the same configuration with identical dynamics a 3.

The discrepancy in PHQRs was probably due to a handling
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qualities "cliff". Comparison of HUD videotape showed that
pilot B flew the aircraft more closed loop than pilot A,
exposing a handling qualities deficiency that pilot A never
saw.

Figures 33 through 35 also show a great deal of scatter
between pilots when subjectively rating a configuration.
This makes it impossible to predict pilot and PIO ratings
perfectly. The prediction will never exactly fit the data.
Despite the difficulty in accurately predicting pilot
ratings, the flight control engineer needs a tool to predict
the performance of a new design before it actually flies.
The flight path error and crossover frequency prediction
methods show a strong correlation to flight test data. The
flight path error and crossover frequency rating prediction
methods should be used as a tool in flight control system

design.
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VI. CONCLUSIONS AND RECOMMENDATIONS

The Optimal Control Model (0OCM), using either the
flight path error or the crossover frequency parameters,
satisfactorily predicted both pilot handling gualities
ratings (PHGR) and Pilot Induced QOscillation (PID) ratings.

The flight path error prediction scheme predicted PHQRs
within one rating 62 percent of the time and PI0O ratings %26
percent of the time. This technique agreed with theory,
predicting poorer ratings for larger values of flight path
error.

The crossover frequency prediction scheme predicted
PHQRs within one rating 80 percent of the time and PFIC
ratings 92 percent of the time. This technique showed that
a higher crossover frequency yielded a better rating.

Both PI0O prediction schemes were not as accurate at
higher PIO ratings, due to PIO rating discrepancies in the
original databases. As a result, new PIO prediction schemes
for flight path error and crossover frequency were developed
using a least squares regression of the flight test data.
These new PI0O prediction schemes should be flight tested to
verify their accuracy.

Because of the subjective nature of PHORs and PIO
ratings, the flight test results varied from pilot to pilot.
In general, fighter pilots gave configurations poorer PHGRs

and PI0 ratings than the multiengine pilots. Additionally,
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the correlation between multiéngine pilots was better than
with fighter pilots.

The crossover frequency prediction scheme was the most
accurate predictor of pilot ratings. This showed that
pilots place more emphasis on workload than performance when
using the handling qualities rating scale. The flight path
erraor prediction schehe was slightly more accurate for PIO
ratings. Both predictors agreed with classical control
theory, showing correlation between flight path error,
crossover frequency, and pilot/Pl0 ratings. The Optimal
Control Madel flight path error and crossover freguency
ratings prediction methods are valid and should be used as a

tool in flight control design. -
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APPENDIX A

NT-33A STABILITY DERIVATIVES

AND
FLIGHT CONTROL CONFIGURATIONS
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During the LAHOS, HAVE PIO, and HAVE CONTROL flight
tests, the NT-33A was always flown in the power approach
configuration (gear down, flaps 30 degrees, speed brake

extended). The approach airspeed varied with aircraft fuel

weight as shown below:

Fuel Remaining (Gals) = Approach Speed (KIAS)

150 125
250 130
350 135
450 140
550 140

A touchdown speed of 120 KIAS (U0=205 feet/sec and H0:25
feet/sec) was used for defining the LAHOS, HAVE PIO, and HAVE
CONTROL dynamics and stability derivatives. Phugoid and
lateral-directional characteristics were held constant. A
listing of NT-33A parameters held constant throughout the
evaluations are in Table 18.

For the LAHOS configurations, the gearing ratio between
the elevator and the stick position was selected by the pilot
for each evaluation. For HAVE PIO, the gearing ratio was
selected for each configuration by the first pilot to fly it,
from then on it was held constant. The HAVE CONTROL test
team set the gain of the pitch rate to stick force transfer

function at a constant value of 0'34"6 .
e
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Table 18

NT-33A PARAMETERS

PARAMETER VALUE

Ynep (red/sec) variable
Tap . variable
n/a (g/red) 4.850
1/Tgs (1/mec) 0.70
Wnp (rad/sec) 0.17
L S 0.18
1/Tg; (1/3ec) 0.08
Wngd (rad/pec) 1.30
La .20
®©/B 1.80
Ty (mec) 0.30
Fes’in (iba/in) 8. 80
Fas’in (1bs/in) 3.00
A

Feel systeas: in/1b)

82 + 2(.68)(26)a « ges

Elevator: A = aq. go

Alleron: A = 168.00

Rudder: A= 11 .47

782

Actuetors: (Ceg/in)

s2 . 20.7)(78)8 + 782
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LAHOS Confj .

The stability derivatives and dynamics characteristics

for the LAHOS baseline configurations are shown in Table 19.

Table 19: LAHOS Baseline Configurations
Parameter 1-1 2-1 3-1 4-1 5-1
wsp 1.03 2.30 2.18 2.00 3.90
(sp 0.73 0.57 0.25 1.06 0.53
Xu -0.041 -0.041 -0.041 -0.041 -0.041
Xw 0.11 0.11 0.11 0.11 0.11
Xq 0 0 0
X<5 0.0032 0.0032 0.0032 0.0032 0.0032
e
Zu -0.25 -0.26 -0.26 -0.286 -0.26
Zw -0.75 -0.75 -0.75 -0.75 -0.75
Zq 0.0 0.0 0.0 0.0 0.0
Z6 1.1 1.1 1.1 1.1 1.1
e
Mu 0.0 0.0 0.0 0.0 0.0
Nw -0.00232 -0.01875 -0.02239 -0.00663 -0.085934
Hq -0.78 -1.83 -0.29 -3.49 -3.25
Hé 0.33685 0.33885 0.33685 0.33885 0.33685
e
90 4.5 4.5 4.5 4.5 4.5
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JAVE PIO Copfigurat

The stability derivatives and dynamics characteristics

for the HAVE PIQ baseline configurations are shown in Table

20.
Table 20: HAVE PIO paseline Configurations
Parameter 2-1 3-1 4-1 5-1
w 2.41 4.22 3.04 1.70
sp
4 0.63 0.97 0.73 .68
sSp
Xu -0.041 -0.041 -0.041 -0.041
Xw g.11 0.11 0.11 0.11
Xq 0.0 0.0 0.0 0.0
X6 0.0032 0.0032 0.0032 0.0032
e
Zu -0.26 -0.28 -0.26 -0.2%
Zw ~-0.808472 -0.92116 -0.84168 -0.769793
Zq 0.0 g.a 0.0 3.0
Zé 1.1 1.1 1.1 1.1
e
Hu 0.0 0.0 0.0 g.0
Mw -0.01960 -0.05474 ~-D.03040 -0.00838
Hq -2.28560 -7.27889 -3.59834 -1.54220
Mé 0.33885 0.33885 0.33685 0.33685
e
90 4.5 4.5 4.5 4.5
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Table 21 shows the prefilters used to modify the LAHOS
HAVE PIO, and HAVE CONTROL baseline configurations.

Table 21: NT-33A Flight Control Prefilters

First Order Filters

A B C D 1 2 3 4 5
K 2.5 3.0 5.0 0.5 1.0 106.0 4.0 2.0 1.0
7y 4.0 3.33 2.0 20.0 ——— === -—- -—- -—-
T, 10.0 10.0 10.0 10.0 0.0 10.0 4.0 2.0 1.0
Second Order Filters
B 7 8 g 10 12 13
K 256 144 81 38 186 4 g
Cl 0.7 0.7 0.7 0.7 0.7 0.7 - 0.7
IR 16 12 ] 5] 4 2 3
n
1
K(s+rl)
First Order Systenms:
(s+12)
K
Second Order Systems:
(sz+2(wn +wn 2)
1 1
99
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Tables 22 and 23 show the LAHOS and HAVE PIO .
configurations flown and modeled using the optimal control

model.

Table 22

LAHOS Flight Control System and
Aircraft Dynamics Combinations

Configuration

Filter 1 2 3 4 S

-A X X

-B X

~C X X X X

-1 X X X X X

-2 X X X

-3 X X X X X

-4 X X X X

~5 X

~6 X X X X X

~7 X X X X

~8 X

-9 X

-10 X X
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Table 23

HAVE PIO Flight Control System and
Aircraft Dynamics Combinations

Configuration
Filter 2 3 4 5
~-B X
-D X
-1 X X X X
-2 X
-3 X
-5 X
-6 X
-7 X
-8 X X
-9 X
-10 X
-12 X
-13 X
HAVE CONTROL Confi .

To determine the approximate stability derivatives for
the HAVE CONTROL baseline configurations, LAHOS 1-1 was used
as a baseline, and the feedback characteristics of the NT-33A
were used to estimate the new stability derivatives. This
was done using the technique described in (7:113). The three

stability derivatives modified were Zw, Mw’ and Hq as

Zy = Iy = Zs:KalUg
My = My = Mg Kaof/Ug (58]
Hy = Mg - Mg Ko/Ug
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The gains K and Kq are the feedback gains used to J
derive the desired stability derivatives. Using the short
period approximation, the stability derivatives can determine

the short period damping ratio and natural frequency as

€
"
S
- =x
]
=
=

2w = -M. - 2. [59]

LAHOS 1-1 values are substituted into [58] and then the

results are substituted into [59] yielding

€
"

1.04587 + 0.25264Kq + 0.340893K  + 0.00181KaKq

i

ZCwn 1.51 + 0.33685Kq + 1‘1Ka/205'0 [60]

Kq and Ka are determined for a given value of { and wn'
K_ and Ka are then substituted back into [58] along with

q
LAHOS 1-1 values to give

Z, = -0.075 - 1.1K_/205.0

nw' = -0.0023213 - 0.33885K_/205.0 (61]
M = -0.76 - 0.33685K

q » q

These equations provide the estimated stability
derivatives used to determine the HAVE CONTROL

configurat<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>